IS MY WATER SAFE?

Yes, your water is safe to drink. We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report). This report provides details about where your water comes from, what it contains, and how it compares to standards set by the Environmental Protection Agency. This report is a snapshot of 2017 water quality. We are committed to providing you with information because informed customers are our best allies, and we want you to understand and trust the safety and quality of your water.

OUR BOARD

Front Row (L to R): Commissioner John Burn, Commission Chair Rick Crosby, Mayor Will Haynie, Back Row (L to R): Secretary-Treasurer Mac Jenkinson, Commission Vice-Chair Susan Mellichamp, Commissioner Diane Lauritsen, Town of Mount Pleasant Water Supply Chair Joe Bustos

MPW SERVICE AREA

ABOUT OUR WATER SOURCES

Mount Pleasant Waterworks (MPW) has two water sources: groundwater from the Charleston Aquifer, formally known as the Middendorf Aquifer, and purchased treated surface water from Charleston Water System. The Charleston Aquifer is a large body of pristine groundwater between 1,800 to 2,000 feet deep beneath Charleston, Dorchester and Berkeley counties. MPW treats the raw water using state-of-the-art Reverse Osmosis (RO) technology. The treated surface water is from the Bushy Park Reservoir and the Edisto River.
PROTECTING OUR CHILDREN

When school is out, water sits in distribution lines allowing sediment and deposits to naturally accumulate over time.

In years past, Charleston County School District (CCSD) has flushed water service lines prior to students return. In 2017, MPW partnered with CCSD to flush distribution lines. During the flushing process, the water flowing in the distribution lines reached maximum velocities. These higher than normal velocities scoured the insides of the distribution lines, helping to clean out any sediment and deposits that may have been present.

While MPW often flushes distribution lines throughout the system, this was the first year in assisting CCSD. This flushing service was provided at no charge and will be conducted on an annual basis. Historically, MPW has sampled areas throughout our distribution system on a monthly basis, many of which are located near Mount Pleasant schools. In 2017 we added school sites to our bacteriological sampling plan. The addition of these sites enhances our coverage in ensuring safe, quality drinking water is distributed to our customers, especially the children.

Water is flushed out of the lines, through a fire hydrant at higher than normal velocity to scour lines.

MPW’s Water Quality Staff preparing for flushing at Whitesides Elementary

We are committed to you and your families and will do all we can to ensure you receive clean safe water no matter where you fill your cup.
WATER QUALITY DATA TABLE

In order to ensure that tap water is safe to drink, EPA prescribes regulations, under the Safe Drinking Water Act, which limits the amount of compounds in water provided by public water systems. All sources of drinking water contain some naturally occurring compounds and minerals. A few naturally occurring minerals may improve the taste of drinking water and have nutritional value at low levels. MPW has opted to increase sampling schedules beyond mandated requirements by testing for certain compounds on an annual basis vs every three years. MPW participates in the Unregulated Contaminants Monitoring Report program. In the data tables below you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below.

IMPORTANT DRINKING WATER DEFINITIONS & UNIT DESCRIPTIONS

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCLG</td>
<td>MCLG: Maximum Contaminant Level Goal: The level of a compound in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.</td>
</tr>
<tr>
<td>MCL</td>
<td>MCL: Maximum Contaminant Level: The highest level of a compound that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.</td>
</tr>
<tr>
<td>TT</td>
<td>TT: Treatment Technique: A required process intended to reduce the level of a compound in drinking water.</td>
</tr>
<tr>
<td>AL</td>
<td>AL: Action Level: The concentration of a compound which, if exceeded, triggers treatment or other requirements which a water system must follow.</td>
</tr>
<tr>
<td>MRDLG</td>
<td>MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial compounds.</td>
</tr>
<tr>
<td>MRDL</td>
<td>MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial compounds.</td>
</tr>
<tr>
<td>Secondary MCL</td>
<td>EPA non-mandatory water quality standard.</td>
</tr>
<tr>
<td>RAA</td>
<td>Running annual average = is the average of the monitoring period average (MPA) for a year.</td>
</tr>
<tr>
<td>RT</td>
<td>Revised Total Coliform Rule = is the revision to the 1989 Total Coliform Rule (TCR) and is intended to improve public health.</td>
</tr>
<tr>
<td>ppm</td>
<td>ppm: parts per million, or milligrams per liter (mg/L)</td>
</tr>
<tr>
<td>ppb</td>
<td>ppb: parts per billion, or micrograms per liter (μg/L)</td>
</tr>
<tr>
<td>% positive samples/month</td>
<td>Percent of samples taken monthly that were positive</td>
</tr>
<tr>
<td>NA</td>
<td>NA: not applicable</td>
</tr>
<tr>
<td>ND</td>
<td>ND: Not detected</td>
</tr>
</tbody>
</table>
JUST HOW MUCH IS ONE PART PER BILLION?

The concentrations of compounds measured in drinking water are usually expressed as parts per million (ppm), parts per billions (ppb) or even parts per trillion (ppt). It is often difficult to grasp just how large a million, a billion or a trillion really is. We have included some examples to provide perspective on how large numbers like 1 million, 1 billion and 1 trillion are. Here are a few examples…

1 Part Per Million
If something is measured as 1 Part Per Million (ppm or mg/L)
- 1 ppm is the same as 1 second compared to 11½ days
- 1 ppm is the same as 1 penny compared to $10,000
- 1 ppm is the same as 1 inch compared to 15 miles

1 Part Per Billion
If something is measured as 1 Part Per Billion (ppb or µg/L)
- 1 ppb is the same as 1 second compared to 31½ years
- 1 ppb is the same as 1 penny compared to TEN MILLION dollars

MOUNT PLEASANT WATERWORKS TREATED GROUNDWATER 2017 DATA

<table>
<thead>
<tr>
<th>Surpassing All EPA Standards</th>
<th>Compound</th>
<th>Typical Source</th>
<th>EPA Ideal (MCLG)</th>
<th>Highest EPA Allowed Level (MCL)</th>
<th>Highest Detected Level (What we found)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disinfectants & Disinfection By-Products</td>
<td>Haloacetic Acids (HAA5) (ppb)</td>
<td>By-product of drinking water chlorination</td>
<td>NA</td>
<td>60 (Range ND-30.36)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TTHMs [Total Trihalomethanes] (ppb)</td>
<td>By-product of drinking water disinfection</td>
<td>NA</td>
<td>80 (Range ND-20.41)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloramine Residual</td>
<td>Added for disinfection</td>
<td>MRDLG=4</td>
<td>MRDL=4.0</td>
<td>RAA: 1.98 (Range 1.6 - 2.4)</td>
</tr>
<tr>
<td>Inorganic Compounds</td>
<td>Fluoride (ppm)</td>
<td>Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories</td>
<td>4.0</td>
<td>4.0</td>
<td>0.26 0.1 - 0.26</td>
</tr>
<tr>
<td></td>
<td>Nitrate (ppm) [measured as Nitrogen]</td>
<td>Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits</td>
<td>10</td>
<td>10</td>
<td>0.046 NA - 0.046</td>
</tr>
<tr>
<td></td>
<td>Copper - action level at consumer taps (ppm)</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits</td>
<td>1.3</td>
<td>AL=1.3</td>
<td>0.13 0 samples exceeded AL</td>
</tr>
<tr>
<td></td>
<td>Lead - action level at consumer taps (ppb)</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits</td>
<td>zero</td>
<td>AL=15</td>
<td>2 0 samples exceeded AL</td>
</tr>
<tr>
<td>Microbiological Contaminants</td>
<td>Total Coliform (RTCR) (% positive samples/month)</td>
<td>Naturally present in the environment</td>
<td>zero</td>
<td>5%</td>
<td>zero</td>
</tr>
</tbody>
</table>
GENERAL INTEREST TABLE

<table>
<thead>
<tr>
<th>Constituent / Unit of Measurement</th>
<th>Secondary MCL</th>
<th>Distribution System</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH: a measurement of the degree to which water may be acidic or basic. Measured in standard units, on a scale of 0 (most acidic) to 14 (most basic) with 7 being neutral.</td>
<td>6.5 – 8.5</td>
<td>7.56</td>
</tr>
<tr>
<td>HARDNESS: denotes high mineral content, mainly calcium and magnesium. (ppm) MPW’s drinking water is soft (less than 70 ppm or 4 grains per gallon).</td>
<td>No Standard</td>
<td>42</td>
</tr>
<tr>
<td>SODIUM: is a necessary nutrient in the human body, and is found naturally in MPW’s groundwater as dissolved salt (sodium chloride, NaCl). (ppm) Note: MPW tap water may contain sodium over the 20 ppm recommended for sodium restricted diets.</td>
<td>No Standard</td>
<td>35</td>
</tr>
<tr>
<td>CHLORIDE: is a major constituent of most waters. Chlorides are widely distributed in nature as salts. Chloride increases the electrical conductivity of water and this increases its corrosivity. (ppm)</td>
<td>250</td>
<td>21</td>
</tr>
<tr>
<td>TOTAL NUMBER OF BACTERIA TESTS PERFORMED (for 2017):</td>
<td>No Standard</td>
<td>1029</td>
</tr>
</tbody>
</table>

The 1996 Safe Drinking Water Act (SDWA) amendments required that once every five years EPA issue a new list of no more than 30 unregulated compounds to be monitored by public water systems (PWSs). Unregulated compounds are those that don’t yet have a drinking water standard set by USEPA. The purpose of monitoring for these compounds is to help EPA decide whether the compounds should have a standard.

The third Unregulated Contaminant Monitoring Rule (UCMR3) was published on May 2, 2012. UCMR3 required monitoring for 30 compounds (28 chemicals and 2 viruses) between 2013 and 2015 using analytical methods developed by EPA, consensus organizations, or both. This monitoring provided a basis for future regulatory actions to protect public health.

Your drinking water was sampled and the results below were provided in 2015.

The UCMR4 list has been published and in August 2018 sampling will begin. Once sampling is complete, results of the UCMR4 testing will be posted in a future Consumer Confidence Report and on MPW’s website.

UNREGULATED CONTAMINANT MONITORING RULE 3 (UMCR3)

<table>
<thead>
<tr>
<th></th>
<th>RO1 WTP</th>
<th>Distribution System</th>
<th>CWS Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>Range</td>
<td>Average</td>
</tr>
<tr>
<td>Hexavalent Chromium (dissolved) (ppb)</td>
<td>ND</td>
<td>ND</td>
<td>0.044</td>
</tr>
<tr>
<td>Total Chromium (ppb)</td>
<td>ND</td>
<td>ND</td>
<td>0.2</td>
</tr>
<tr>
<td>Strontium (ppb)</td>
<td>8.5</td>
<td>8.5</td>
<td>18.2</td>
</tr>
<tr>
<td>Vanadium (ppb)</td>
<td>ND</td>
<td>ND</td>
<td>0.3</td>
</tr>
<tr>
<td>Chlorate (ppb)</td>
<td>47</td>
<td>47</td>
<td>110</td>
</tr>
<tr>
<td>1,4-Dioxane (ppb)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Surpassing All EPA Standards</td>
<td>Compound</td>
<td>Typical Source</td>
<td>EPA Ideal (MCLG)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>Disinfectants & Disinfection By-Products</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Haloacetic Acids (HAAs) (ppb)</td>
<td>By-product of drinking water chlorination</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>TTHMs [Total Trihalomethanes] (ppb)</td>
<td>By-product of drinking water disinfection</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Chloramine Residual (ppm)</td>
<td>Added for disinfection</td>
<td>MRDLG 4</td>
</tr>
<tr>
<td></td>
<td>Chlorine dioxide (ppb)</td>
<td>Added for disinfection</td>
<td>MRDLG 800</td>
</tr>
<tr>
<td></td>
<td>Chlorite (ppm)</td>
<td>By-product of drinking water disinfection</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>Inorganic Compounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turbidity (NTU)</td>
<td>Soil runoff</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Fluoride (ppm)</td>
<td>Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>Nitrate (ppm) [measured as Nitrogen]</td>
<td>Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Total Organic Carbon (ppm)</td>
<td>Naturally present in the environment</td>
<td>Required % removal: 35 - 50</td>
</tr>
<tr>
<td></td>
<td>Copper - action level at consumer taps (ppm)</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>Lead - action level at consumer taps (ppb)</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits</td>
<td>zero</td>
</tr>
<tr>
<td></td>
<td>Microbiological Compounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Coliform (RTCR) (<5% positive samples/month)</td>
<td>Naturally present in the environment</td>
<td>zero</td>
</tr>
<tr>
<td></td>
<td>Cryptosporidium in River Water (per liter)</td>
<td>Human and animal sources</td>
<td>zero</td>
</tr>
<tr>
<td></td>
<td>Giardia in River Water (per liter)</td>
<td>Human and animal sources</td>
<td>zero</td>
</tr>
</tbody>
</table>

*Sampled in 2015, next sampling to occur in 2018, 3 year cycle.
FACTS ABOUT DRINKING WATER?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some compounds. The presence of compounds does not necessarily indicate that water poses a health risk. More information about compounds and potential health effects can be obtained by calling the Environmental Protection Agency’s (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up compounds resulting from the presence of animals or from human activity:

- **microbial compounds**, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife;

- **inorganic compounds**, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming;

- **pesticides and herbicides**, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

- **organic chemical compounds**, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems;

- **and radioactive compounds**, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain compounds in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for compounds in bottled water which must provide the same protection for public health.

DO I NEED TO TAKE SPECIAL PRECAUTIONS?

Some people may be more vulnerable to compounds in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/ Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial compounds are available from the Safe Water Drinking Hotline (800-426-4791).

DRINKING WATER DISINFECTION

The finished (treated) water from both MPW and CWS is disinfected with chloramines, a mixture of chlorine and ammonia. CWS uses both chlorine dioxide (pre-treatment) and chloramines (post-treatment) to reduce the total trihalomethane (THM) formation potential in the finished water. THMs are disinfection by-products that are formed when chlorine reacts with organic matter in the water. **NOTE: The small amount of ammonia used to form the chloramines must be removed from the water before it’s used in home dialysis machines.**

Aquarium owners must pretreat the water. Your pet store can show you how.
Non-Detected Compounds (ND):

- GEN-X
- 1,1,1,2,3-DICHLOROETHANE
- 1,2,3-TRICHLOROPROPANE
- 1,3-BUTADIENE
- 16-A-HYDROXYESTRADIOL (ESTRIOL)
- 17-A-ETHYNYLESTRADIOL (ETHINYL ESTRADIOL)
- 17-SS-ESTRADIOL
- 4-ANDROSTENE-3,17-DIONE
- BROMOCHLOROMETHANE (HALON 1011)
- BROMOMETHANE (METHYL BROMIDE)
- CHLORODIFLUOROMETHANE (HCFC-22)
- CHLOROMETHANE (METHYL CHLORIDE)
- COBALT
- EQUILIN
- ESTRONE
- MOLYBDENUM
- PERFLUOROBUTANESULFONIC ACID (PFBS)
- PERFLUOROHEPTANOIC ACID (PFHBA)
- PERFLUOROHexasULFONIC ACID (PFHXS)
- PERFLUORONONANOIC ACID (PFNA)
- PERFLUOROOCtANESULFONIC ACID (PFOS)
- PERFLUOROOCTANOIC ACID (PFOA)
- TESTOSTERONE
- VANADIUM
- GROSS ALPHA, EXCL.
- RADON & U
- COMBINED RADIUM (-226 & -228)
- RADIUM-226
- RADIUM-228
- COMBINED URANIUM
- N-PROPILBENZENE
- O-XYLENE
- STYRENE
- ISOPROPILBENZENE
- BROMOBENZENE
- ETHYLBENZENE
- TOluene
- BENZENE
- CHLOROBENZENE
- 1,1,2,2-TETRACHLOROETHANE
- TETRACHLOROETHYLENE
- 1,1,1,2-TETRACHLOROETHANE
- 1,1,2-TRICHLOROETHANE
- TRICHLOROETHYLENE
- 1,2-DICHLOROPROPANE
- CARBON TETRACHLORIDE
- 1,1,1-TRICHLOROETHANE
- 1,2-DICHLOROETHANE
- TRANS-1,2-DICHLOROETHYLENE
- 1,1-DICHLOROETHANE
- 1,1-DICHLOROETHYLENE
- VINYL CHLORIDE
- P-DICHLOROBENZENE
- O-DICHLOROBENZENE
- M-DICHLOROBENZENE
- P-CHLOROTOLUENE
- O-CHLOROTOLUENE
- DICHLOROMETHANE
- XYLENES, TOTAL
- BROMOCHLOROMETHANE
- SEC-BUTYLBENZENE
- TERT-BUTYLBENZENE
- 1,3,5-TRIMETHYLBENZENE
- N-BUTYLBENZENE
- 1,2,3-TRICHLOROBENZENE
- 1,2,4-TRIMETHYLBENZENE
- 2,2-DICHLOROPROPANE
- 1,2,3-TRICHLOROPROPANE
- 1,3-DICHLOROPROPANE
- 1,1-DICHLOROPROPENE
- DIBROMOMETHANE
- CIS-1,2-DICHLOROETHYLENE
- 1,2-DICHLOROBENZENE
- METHYL TERT-BUTYL ETHER
- NAPHTHALENE
- HEXACHLOROBUTADIENE
- CIS-1,3-DICHLOROPROPENE
- TRANS-1,3-DICHLOROPROPENE
- TRICHLOROFUOROMETHANE
- CHLOROETHANE
- BROMOMETHANE
- DICHLORODIFLUOROMETHANE
- CHLOROMETHANE
- 2,4,5-TP
- 2,4-D
- 3-HYDROXYCARBOFURAN
- ALDICARB
- CARBOFURAN
- METOLACHLOR
- ALDICARB SULFONE
- ALDICARB SULFOXIDE
- DINOSEB
- PICLORAM
- OXAMYL
- GLYPHOSATE
- DIQUAT
- DALAPON
- P-ISOPROPYLTOluENE
- METHOMYL
- CARBARYL
- TOXAPHENE
- THALLIUM, TOTAL
- BERYLLIUM, TOTAL
- ANTIMONY, TOTAL
- CHLORDANE
- METIBUZIN
- ALDRIN
- HEXACHLOROBENZENE
- PROPAchlor
- BUTACHLOR
- DIEldrin
- HEPTACHLOR EPOXIDE
- HEPTACHLOR
- LASO
- ATRAzINE
- METOLACHLOR
- HEXACHLOROCYCLOPENTADIENE
- DI(2-ETHYLHEXYL) PHTHALATE
- SIMazine
- DI(2-ETHYLHEXYL) ADipate
- METHoxyCHLOR
- ENDRIn
- ACENAPHTHENE
- ACENAPHTHYLene
- ACETOCHELOR
- ALACHLOR
- AMETRYN
- ANILAZINE
- ANTHRACENE
- ASPON
- ATRATON
- AZINPHOS-ETHYL
- AZINPHOS-METHYL
- BENIDOCARB
- BENFLURALIN
- BENZO(A)ANTHRACENE
- BENZO(B)FLUORANTHENE
In Your Water!

ADDITIONAL INFORMATION FOR LEAD

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Mount Pleasant Waterworks is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Get Involved

Public Meeting: We are governed by a Board of Commissioners, which meets monthly. These meeting are open to the public, and customer participation is encouraged. Meetings are typically held the third Monday of every month at 5:30 pm at 1619 Rifle Range Road. To confirm meetings times and review meeting agendas visit www.mountpleasantwaterworks.com.

Speakers Available! MPW’s Commissioners and staff want to help you understand the water and wastewater utility. Need a speaker for your next Homeowners Association meeting, community event, or classroom. Look no further. To schedule a speaker contact: Dionna Ebeling, Strategic Communications & PR Director 843.375.5462 or debeling@mpwonline.com

Citizen’s Water Academy: The Academy guides and educates citizens on all operations of Mount Pleasant Waterworks. Academy participants will tour key facilities, learn about the challenges Mount Pleasant Waterworks faces and have the opportunity to meet key staff members and receive insight into their water and wastewater provider. The Academy will be held twice a year (Spring and Fall). Stay tuned to www.mountpleasantwaterworks.com for application deadlines.

Water For Community Events: Mount Pleasant Waterworks provides drinking water for outdoor community events held in our service area. We do this as a public service to support the community and share information about tap water. Book our H2O2GO today by visiting www.mountpleasantwaterworks.com. It’s an environmentally friendly way to serve water at your event!
Water For Life

Operations Center
1619 Rifle Range Road, Mount Pleasant, SC 29464
Walk-in, drive-thru, and night deposit
M-F 8am - 5pm, closed holidays
(843) 884-9626 / customerservice@mpwonline.com
www.mountpleasantwaterworks.com